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A Method for Reduction of Number of Actuators in Independent 
Modal Space Control 

Jai-Hyuk Hwang*, Jung-Soo Kim** and Seung-Ho Baek*** 
(Received June 1, 1998) 

In this paper, a modified Independent Modal Space Control (IMSC) that relaxes the funda- 

mental hardware requirement of  IMSC is proposed for handling the vibration and attitude 
control problem of large, flexible structures. The method incorporates a new switching algorith- 
m for dynamically selecting controlled modes and a novel design technique for determining the 
modal control force. The main advantage of the proposed method is that it minimizes the 
discontinuity of  the modal control forces and assures the asymptotic stability of the closed-loop 

system. The simplicity and efficiency of the method is demonstrated through an example 
involving vibration control of a cantilevered beam. The system performance and stability of the 

proposed method is compared with previously published methods that also seek to reduce the 
number of actuators in IMSC. 

Key Words :  Vibration Control, Asymptotic Stability, Switching Algorithm, Number of 
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1. Introduction 

Many control methods have been proposed to 
date for controlling the vibration of large, flexible 

systems such as space structures(Balas, 1978; 
1979; Chen, 1982; Goh and Coughey, 1985; Fan- 
son and Caughey, 1990). One widely known 
method is collocated control(Balas, 1978; 1979; 

Chen, 1982) that uses direct velocity feedback. 
This method is unconditionally stable if the 

actuator dynamics can be neglected, but can be 
unstable in the presence of actuator dynamics. To 
remedy this deficiency, Goh and Caughey(Goh 
and Caughey, 1985; Fanson and Caughey, 1990) 
have proposed positive position feedback control. 
This method maintains stability even in the pres- 

* Departement of Aeronautical and Mechanical Engi- 
neering, Hankuk Aviation University, 200-1 Hwa- 
jon-dong, Koyang-city, Kyounggi-do, 412-791, 
Korea 

** Department of Mechanical Engineering, Hongik 
University. 

*** Research Assistant, Dept. of Aeronautical and 
Mechanical Engineering, Hankuk Aviation Uni- 
versity 

ence of  significant actuator dynamics. In addition, 
the stability criterion is not affected by variations 
in the system parameters. 

Although numerous other methods have also 
been reported in the open literature, they all face 

implementation difficulties as the order of the 
discretized model of  the system increases. For 
instance, for cases where the control gains need to 
be calculated in real-time, the amount of compu- 
tation required may become prohibitive for high 

-order control systems. To address this problem, 
Meirovitch and coworkers(Meirovltch and 
Baruh, 1982; 1983; Meirovitch, 1990; Meirovitch 
et al., 1983; Hale and Rahn, 1984; Baruch and 
Silverberg, 1985; Baz et al., 1992) have proposed 
the Independent Modal Space Control(lMSC) 
method that can design controllers in mutually 
independent modal space with relative ease and 

simplicity. In this method, the modal matrix 
serves as the transformation matrix that trans- 

forms the equations of motion of a structure into 

a set of decoupled equations in modal coordi- 
nates. The controller is then individually designed 
for each modal coordinate. Since the controller 
design is performed for each mode based on the 
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respective modal states, the design process is quite 

simple, irrespective of  the degree of freedom of the 
system. In particular, the amount of computation 
is drastically reduced. The modal control force 
thus obtained can then be converted to the actual 
control force through coordinate transformation. 

For IMSC, the controllability is always 
assured, and the control spillover can be minim- 
ized, provided that the number of actuators is 
equal to the number of modes. In estimating 

modal states for determining the modal control 

force, the observation spillover problem can be 
resolved by employing a modal filter with suffi- 

cient number of sensors(Hwang et al., 1998). 
Notwithstanding these advantages, the require- 

ment that the number of actuators be equal to the 
number of controlled modes places a fundamental 
hardware constraint that tends to limit the appli- 
cability of the method. The main focus of the 

present work is to relax the hardware requirement 
by reducing the number of actuators within the 

context of IMSC(Meirovitch, 1990; Baz et al., 
1992; Lindberg and Longman,  1984; Baz and 
Poh, 1988). The situations involving fewer num- 

ber of actuators can arise either by designing in 
fewer actuators or through loss of  actuators due 
to some damage sustained during operation. To 
achieve vibration control with fewer actuators 
than the number of modes, either a method of  

control force computation based on pseudo 
-inverse or a method involving selective modal 
control based on some switching algorithm can be 

employed. 
In this paper, a switching algorithm that can 

reduce the number of actuators without appre- 
ciable deterioration in control system perfor- 

mance is developed. A novel controller design 
incorporating this algorithm is then proposed and 
validated. When fewer actuators are employed, 
switching may cause instability due to energy 

transfer between the system modes. Therefore, the 

stability is also examined and verified with the 
switching algorithm incorporated into the control 

scheme. 

2. Reduction of the Number of 
Controllers in the Independent Modal 

Space Control 

The discretized equations of  motion of continu- 

ous systems can be approximated by an ordinary 

differential equation of the form given by 

19 (t) + Av  (t) = f ( t )  (I) 

where I is an identity matrix of order n, A a 
diagonal matrix whose diagonal elements are 

squares of the natural frequencies(A~-diag[wt 2, 
�9 ", co~]), and f ( t )  denotes the modal control 
force vector of order n. The order n refers to the 
number of system modes to be controlled, and 

(t) is the modal displacement vector needed for 
controller design. In deriving Eq. (l) ,  the effect of 
structural damping is neglected. Since the control 

force for each mode is independently designed 
when using IMSC, the design process is quite 

simple. However, the number of actuators should 
be equal to the number of  system modes(Meir- 
ovitch and Boruh, 1982; 1983; Meirovitch, 1990), 

placing a fundamental hardware constraint on the 

controller design. Although some efforts at reduc- 
ing the number of actuators have been reported 
(Meirovitch, 1990; Baz et al., 1992; Lindberg and 
Longman, 1984; Baz and Poh, 1988), more work 
is needed in this regard. For example, Meirovitch 
et al. (1990) showed that the number of  actuators 

could be reduced by using pseudo-inverses. This 
method has proven to be ineffective with regard to 
system performance and stability, however. Lind- 

berg and Longmen (1984) have designed control- 
lers in IMSC based on a suboptimal control 

method. However, the resulting solution is not 
unique, and the stability of the closed-loop sys- 
tem cannot be guaranteed. Thus, verification is 

needed for each solution. Baz and Poh(1988) 
have proposed a modified IMSC based on 
dynamic switching of actuators between the sys- 

tem modes. At each time step, the magnitudes of 

the modal energy are compared, and the modes 
equal to the number of actuators are selected ['or 
control. The selection is based on the instant 
energy level possessed by each mode; the modes 
with high energy levels are selected. This method 



44 Jai-Hyuk Hwang, Jung-.-Soo K#n and Seung-Ho Baek 

entails difficulties associated w.ith the switching 

algorithm, and stability cannot be guaranteed due 

to asymmetry of the coefficient matrices of the 

c losed- loop system equations. To address these 

problems, an unconditionally stable IMSC 

method utilizing fewer actuators than the number 

of the system modes and applying a new switch- 

ing algorithm is presented. A brief summary and 

evaluation of the pseudo-inverse method and the 

method of Baz and Poh is presented first to place 

the proposed method in a proper context. 

2.1 Pseudo-Inverse Method 
As the name implies, IMSC entails obtaining 

the modal  control force f ( t )  in modal  space. To 

obtain f ( t ) ,  various methods such as optimal 

control can be applied independently for individ- 

ual modes. By the modal  expansion theorem, the 

following relationship between the modal control 

force vector and the actual control force vector 

can be obtained: 

f (t) = BI ' ( t ) ,  (2) 

B"-[~b~(xl)] i : 1 , 2 ,  ..., n, j = l , 2 ,  ..., m, 

where F ( t )  denotes the actual control force 

vector, ~b~.(:t:~) the value of i-th eigenfunction at 

xj, n the number of  system modes, and m the 

number of actuators. In order to express F (t)  as 

a fnnction of f ( t ) ,  matrix B must be inverted. 

Since the inverse can only be obtained if the 

number of  actuators and system modes are equal 

to each other, i. e., m.~-n, use of  1MSC requires 

that the same number of  actuators be used, severe- 

ly limiting the usefulness of the method for practi- 

cal applications involving large number of modes. 

With fewer actuators ( r e < n ) ,  the following 

pseudo-inverse can be used to obtain the actual 

control three (Meirovitcb, 1990), 

F ( t ) = ( B r B ) " B r f ( t )  = B + f ( t )  (3) 

where B ~ denotes the pseudo-inverse of B. Since 

the pseudo-inverse is not the real inverse, how- 

ever, error is present. Therelore the modal  control 

force vector f ( t )  deviates from the nominal 

design value, and significant error in the system 

response is possible. Furthermore, the closed 

- loop  system can become unstable. 

2.2 Modified Independent Modal Space 
Control Method of Baz and Poh 

In order to reduce the number of actuators, Baz 

and Poh have proposed a modified method, in 

which the allocation of  the modes to be 

controlled by actuators are determined by the 

energy levels of the system modes. At each time 

step, instant modal energy levels are compared, 

and switching of modes for actuator application 

occurs based on the latest ordering (Baz and Poh, 

1988). In other words, switching occurs at every 

fixed time interval, and the switching time is 

identical for all modes. In order to more closely 

examine the potential problems associated with 

this method, a slight rephrasing is performed as 

follows. First, the modal  control force vector can 

be written as 

f ( t )  '~'~l'f*(t) (4) 

where the columns of the coordinate transforma- 

tion matrix F are composed of  the columns of the 

identity matrix and serves to reorder the modal 

control force vector, and f * ( t )  represents the 

reordered modal control  tbrce vector for the new 

time step. The modes to be controlled and neglect- 

ed can be written as 

] 
f* (l) = [fv (t) J (5) 

where fc( t)  denotes the vector composed of the 

controlled modes and f v ( t )  the vector of the 

modes neglected for the time being, i. e., until the 

next time step. In general, fv  ( t)  represents the 

modal forces arising from the control spillover. 

The modal control force vector can be converted 

to the actual control force through the modal  

transformation matrix composed of the eigenfunc- 

tions 

~1(xl) ... ~,(xm) ~l(x.+~) ... ~ l (x . )  

f * ( t )  - 
r  " '  r  r  ... r  

�9 . " �9 �9 

r  ... ~ , , ( x . )  r  ... (~ , (x , )  

[ (6)  
Fu( t )  J -kB, ,c  13~,u..l LFu(t)J 

where the subscripts C and U denote the 



A Method for Reduction of Number of Actuators in Independent... 45 

controlled and uncontrolled modes, respectively. 

Since the number of  actuators is equal to m, /% 

(t)  = 0  and f * ( l )  can be written as 

The actual control force vector is given by 

Fc( t )  =BEl l e ( t )  (8) 

and the modal control force vector for the un- 

controlled modes is given by 

f~ ( t )  = -1 BvcBccfc (t) (9) 

The above development demonstrates that em- 

ploying fewer actuators than the number of modes 

entails control spillover f u ( t )  for the un- 

controlled modes. 

The modal control vector in independent 

modal space can be represented by 

S t ( t )  . . . . . .  Kvuc (t) - t G ; ~  (t) (10) 

where Kp and Kv are the positive definite control 

gain matrices. Substituting Eqs. (8), (9) and (10) 

into Eq. (7), we obtain 

- K ~  - K ~  ~ , ( t )  ] 
f * ( t )  = [ - B , ( B ,  cKt,-' - BvcBc?' Kv ] [ 9c (t) .I 

BvcBcc IG BvcBE,: Kv 

The above equation can be rewritten as 

f * ( l )  . . . . .  G~ ,u*( t ) -Gvg*( t )  (11) 

where 

and u* (t)  denotes the reordered modal displace- 

ment vector in which the controlled and un- 

controlled modes are put in the form of  

~ * ( l ) ~ [ ~ ; ( t )  ] " (12) 

There are two main problems associated with 

the method of Baz and Poh. First, the coefficient 

matrices of the c losed- loop equations, i. e., 

FGI, F r and FGvY 'r, become asymmetric. It is 

known that systems possessing asymmetric coeffi- 

cient matrices cannot be unconditionally stable. 

Second, the switching of actuators occurs after 

each time step based purely on the current modal 

energy level. This switching can cause sudden 

change in the control force(control gain), leading 

to deterioration of the vibration control response, 

and in a entreme cases even driving the system to 

instability. In the next section, we propose a new 

method that  addresses the problems just 

mentioned. 

3. A New Method in the Independent 
Modal Space Control 

A modified IMSC is presented in this section. 

Developing an improved switching method that 

ensures the stability of the c losed- loop system 

constitutes a key component of the proposed 

method. In contrast to the method of Baz and Poh 

in which the switching time is fixed for all modes, 

the switching time in the present method is 

dynamically determined by applying a new proce- 

dure that will be explained below. As before, the 

system modes are sorted based on the modal 

energy level. In the beginning, modes with large 

initial energy levels are selected for control. For  

each mode selected for control, an actuator is 

applied tbr the duration of the time constant 

(inverse of the real part of the eigenvalue) of that 

particular mode. The mode with the shortest time 

constant is up first for reappraisal.  At that instant, 

the energy levels for all modes that are not cur- 

rently being controlled (including the mode to 

which the actuator has just been taken off) are 

compared, and the mode possessing the largest 

energy level is selected for control. There is an 

addit ional requirement, however, when the 

actuator is being switched from one mode to 

another, as an abrupt change in the values of  the 

control gain may cause discontinuity in the con- 

trol force. Since this discontinuity will in general 

have an adverse effect on the system response, 

suitable time delays are introduced to avoid this 

possibility. The switching of  the displacement 

feedback is designed to occur at the moment the 

modal displacement of the new mode becomes 

zero, while the switching of the velocity feedback 

occurs just as the modal velocity becomes zero. 

Introducing such time delays enhances the stabil- 

ity performance of the control system. When the 
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next actuator is made available after the appropri- 
ate time has elapsed, the above procedure is 
repeated. In this way, a series of successive mode 
switchings occur as actuators are freed from one 

mode and applied to another. 
Another key component is to modify IMSC as 

given below so that the control gain matrices G~ 
and Gv become symmetric, thus ensuring the 

stability of the closed-loop system: 

f c ( t )  . . . . .  Kpuc(t)  - K v g c ( t )  -" KpB:crBrcuv( t )  

- KvB?Z B~c f 'v ( t ) .  (13) 

The above equation combines the advantages of 

IMSC and the coupled control methodology. 
Applying Eq. (13) into Eq. (9), we obtain 

f,, (t) -: -: " = - Bt ,cBccKpuc ( t )  - B u c B c c K v  u c ( t )  
- 1  - - T  " T - BvcBccK~Bcc  Bcc uv ( t )  
- 1  - T  T - B v c B c c K v B c c  Bvc  9v  ( t ) .  (14) 

A new modal control vector obtained from Eqs. 

(13) and (14) can be written as 

t" f If~ KpBc\r B[c  ] 
f *  ( ) = [ B v c B c ~ K p  BvcBcc': KpBcc-~ BvcT" j u* (t) 

Kv K v B c r B r c  ] . 

BvcB?dKv  L, vc~cc~xwcc  ~ v c  

" - - G ~ u * ( t ) - G r  9*( t ) .  (15) 

The new control gains G~ and G~ can readily be 

verified to be positive definite matrices. 

To apply this new control scheme to the system, 
Eqs. (15) and (4) can be substituted into Eq. (1) 

a s  

lb" ( t )  + A u  ( t ) = f  ( t )  = - F(;~u* ( t )  

- FGr i~ * ( t )  
= - F G ~ , F T u ( t )  - F G ~ F r  ~ ( t ) .  

(16) 

Hence, the closed-loop equation of  motion of the 

vibration system can be expressed by 

19 ( t )  + l "G~l ' r  f~ ( t )  + ( A  + FG~,I "r) v ( l )  =0,  
(17) 

where F G ~ F  r and A + F G ~ F  r are symmetric 
positive definite matrices. 

4. S t a b i l i t y  A n a l y s i s  of the Closed- 
Loop System 

considered. Let us define the following candidate 
Lyapunov  function for de termining the 
asymptotic stability of  the system: 

[A + F G ~ F  r] u ( t ) .  (18) 

In the above equation, the first term denotes the 
kinetic energy, while the second term refers to the 

potential energy. Since I and A + F G ~ F  "r are 
symmetric positive definite matrices, V ( t )  is also 
positive definite. Differentiating Eq. (18) with 
respect to time, we obtain 

v ( t )  - -  ;, ~ ( t )  I iJ  ( t )  + v"(t) 
[ A +  F G ~ F  r] 9 ( t ) .  (19) 

Substituting Eq. (17) into (19) and rearranging, 
we obtain 

9"(t)  = -  iJ r ( t ) F G ~ F T 9  (t).  (20) 

Except for the displacement and velocity feedback 
switching times, denoted t,,, the differentiation of 
V ( t )  presents no problem, At the switching 

times, Gp and Go need to be differentiated as at 
other times, but the resulting values can blow up 
to infinity. To forestall this possibility, the t~ are 

selected such that the displacement feedback is 
switched when u(t,~)=0 and the velocity feed- 

back switching occurs when ~)(t~)=0. In this 

way, no discontinuity is present over the entire 
time domain. Since -,, r F G v F  in Eq. (20) is posi- 
tive definite, the condition that V( t~ )<0  is 
always satisfied, i. e., the right-hand side of Eq. 

(20) becomes negative semi-definite. Since V( t )  
is positive definite while 12(t) is negative semi 
-definite over the entire statedomain, the candi- 
date becomes the Lyapunov function and the 

system is stable in the sense of Lyapunov. 

Furthermore, since ~ ' ( t ) = 0  if and only if u( , )  
= 9 (t) =0,  the system is asymptotically stable by 

the lnvariant Set Theorem o f L a  Salle (1991). To 
summarize, the above derivation shows that the 
proposed method guarantees asymptotic stability 

of the vibration control system even in the pres- 

ence of mode switching. 

The stability of the closed-loop system is now 
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5. An Example 

To illustrate the method developed in the previ- 

ous sections, a cantilevered beam will be used as 

an example. According to the Bernoulli-Euler 

model, the governing equation is 

~ [ 92w(x, t) I c~2w(x, t) 
c~x.~ E1 (x) ~x z .... + M (x) 3t ~ 

: f ( x ,  t). 

It is assumed that the mass per unit length M = 1, 

flexural rigidity E I =  10, and length /=10.  The 

number of actuators m = 2 ,  and the number of 

system modes n ~ 6 .  The actuators are placed at 0. 

55 / and  1.0/in order to avoid the nodal points of 

all 6 modes. The switching times ts correspond to 

the moment at which the modal displacement and 

modal velocity become zero, counting from the 

moment the time constant has elapsed from the 

previous switching time. Applying a unit impulse 

at x=9.8 ,  the simulated responses are presented 

in Figs. 1-4. For selected modes, the comparison 

of the modal displacements between the proposed 
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method, the pseudo-inverse method, the method 

of Baz and Poh, and the original IMSC(m=n)  

method is given in Fig. 1. The proposed method 

shows much improved vibration control response 

compared to the pseudo-inverse method and the 

method of Baz and Poh. Although the modal 

responses for only three modes are shown, similar 

results have been obtained for all other modes as 

well. Figure 2 compares the control forces, while 
Fig. 3 compares the modal energy levels for the 

four methods mentioned above. In Fig. 2, the 

method of Baz and Poh shows large discontinu- 
ities in the control force, resulting in serious 

degradation of the modal control responses. On 

the other hand, the magnitude of the control force 

O.2D 
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computed is too small in the case of the pseudo- 
inverse method, which again reduces the modal 

control effectiveness. In the case of the proposed 
method, however, there is almost no discontinuity 

in the control force computed, and much im- 

proved vibration control is observed. In Fig. 3, 

the method of Baz and Poh shows large fluctua- 

tions in the modal energy level due to the discon- 

tinuities of the control force shown in Fig. 2. The 

figure also shows that the pseudo-inverse method 

is unsatisfactory with regard to vibration control. 

Although the performance of the proposed 

method is somewhat inferior to the original IMSC 

( re=n) ,  it is clearly superior to the other two 

methods. Figure 4 shows the actual beam dis- 

placement as a function of time. It is seen that the 

vibration control response is quite satisfactory 

even with only two actuators. 

6. Conclusions 

The present investigation addresses the issue of 

reducing the number of actuators in independent 

modal space control. While using fewer actuators 

than the number of system modes, the proposed 
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method can still be an effective tool for vibration 
control. The stability of the closed-loop system 
incorporating the switching algorithm is also 
demonstrated. Through an example, the proposed 
method is compared with previously published 
methods that also seek to reduce the number of 
actuators in independent modal space control. 
The results of the present work can be summar- 
ized as follows: 

(1) An effective and stable switching algorith- 
m that does not seriously degrade the perfor- 
mance of the vibration control system is devel- 

oped. 
(2) A procedure for determining the control 

force that ensures the stability of the vibration 
control system is devised. This method combines 
the "best" features of IMSC and coupled control 
techniques. 

(3) A stability analysis of the closed-loop 
system incorporating the switching algorithm 
shows that the proposed method is asymptotically 
stable. 

(4) Although the proposed method is slightly 
inferior to the original IMSC (m = n), the number 
of actuators can be significantly reduced. In terms 
of performance and stability, the present method 
is clearly superior to previously published 
methods that also seek a reduction in the number 
of actuators. 

Although the effect of structural damping is not 
explicitly considered, the results of the present 
work can be applied to vibration control of 
damped structures as well. 
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